
A(U>io-4db 

Capturing and Analysing Usage of 
Interactive Computer-Based Tools 

M.P. Phillips and RJ. Vernik 

DSTO-RR-0119 

]   | APPROVED FOR PUBLIC RELEASE 

©  Commonwealth of Australia 

DEPARTMENT    OF    DEFENCE 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

SRC QUALITY INSPECTED ■ 



Capturing and Analysing Usage of Interactive 
Computer-Based Tools 

M.P.Phillips and R.J.Vernik 

Information Technology Division 
Electronics and Surveillance Research Laboratory 

DSTO-RR-0119 

ABSTRACT 

This report argues that computer-based tools should incorporate features that support 
the capture and analysis of usage information, particularly if these tools are to be used 
as part of a research program. In addition to discussing the issues that need to be 
considered in terms of tool instrumentation and analysis support, this report provides 
details of experiences gained through the instrumentation of a Computer Aided 
Software Engineering (CASE) tool. 

RELEASE LIMITATION 

Approved for public release 

DEPARTMENT   OF   DEFENCE 

 ♦  
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

DUO QUALITY INSPECTED 3 ^ _— 



Published by 

DSTO Electronics and Surveillance Research Laboratory 
PO Box 1500 
Salisbury South Australia 5108 

Telephone: (08) 8259 5555 
Fax: (08) 8259 6567 
© Commonwealth of Australia 1997 
AR No. AR-010-406 
December 1997 

APPROVED FOR PUBLIC RELEASE 



Capturing and Analysing Usage of Interactive 
Computer-Based Tools 

Executive Summary 

Computer-based tools are generally developed to support individuals engaged in 
particular types of tasks. They also provide a basis for conducting research into 
Human Computer Interfacing (HCI) and information logistics (ie providing needed 
information to a user in an appropriate form at a particular point in time). Although 
many computer-based tools have been developed, relatively few have incorporated a 
means of capturing and analysing usage information. This report argues that tool 
instrumentation and analysis features need to be considered as part of the tool design, 
particularly if the tool is being developed as part of a research program. The 
information obtained could be used to assess the effectiveness of the tool for particular 
tasks and users, usage patterns, and user information requirements. 

This report discusses a range of issues associated with the capture and analysis of tool 
usage. The report focuses on experiences gained in instrumenting a Computer Aided 
Software Engineering (CASE) tool that was developed as part of the Advanced 
Visualisation and Description of Software (AViDeS) program of research. An 
overview of the tool instrumentation approach is provided. The report also provides 
details of a Usage Monitoring and Analysis System (UMAS) which was developed to 
store, analyse, and present usage information captured by the instrumented tool. 

The results of this work have shown that, in addition to the research value gained 
through tool instrumentation, several other benefits can result. For example, usage 
information was used to provide evidence that particular tasks had been carried out 
and for recording task outcomes. The information was also used as a basis for 
capturing, automating, and improving software engineering tasks. 



Authors 

Matthew Phillips 
Information Technology Division 

Matthew Phillips is a researcher employed in Software 
Engineering Group, Information Technology Division. His 
research interests include distributed systems, programming 
language design, software visualisation and object-oriented 
software engineering. Matthew has a Bachelor of Computer 
Science (with Honours) from The University of Adelaide. 

Rudi Vernik 
Information Technology Division 

Rudi Vernik is a Senior Research Scientist employed in Software 
Engineering Group, Information Technology Division. He 
currently leads the Advanced Visualisation and Description of 
Software (AViDeS) task. His research focuses on software 
systems visualisation, large-scale software engineering, and 
information logistics. Rudi has a Bachelor of Electronic 
Engineering (with Distinction), a Diploma of Communications 
Engineering from the Royal Melbourne Institute of Technology 
and a PhD in Computer and Information Science from the 
University of South Australia. 



Contents 

1. INTRODUCTION 1 
1.1 Background 1 
1.2 Purpose 2 
1.3 Presentation ; 2 

2. AVIDES CONCEPTS AND APPROACHES 3 
2.1 Overview of AViDeS Research 3 
2.2 Key Concepts 4 
2.2.1 Process-Based Framework 4 
2.2.2 Integrated Visualisation Approach 6 
2.3 IVES Implementation 7 
2.4 Experimentation 9 

3. INSTRUMENTATION PRINCIPLES AND APPROACH 9 
3.1 Instrumentation Principles 10 
3.2 SEE-Ada Instrumentation Approach 11 
3.2.1 SEE-Ada Usage Monitor 12 
3.2.2 Usage Logs 14 
3.2.3 SEE-Ada Instrumentation 15 

4. THE USAGE MONITORING AND ANALYSIS SYSTEM 16 
4.1 UMAS Overview ...16 
4.2 Analysis and Display of Usage Information 16 

5. SUMMARY OF EXPERIENCES 18 
5.1 Capturing Task Definitions 18 
5.2 Overview of Tool Usage 19 
5.3 Usage Profiles and Task Classification 21 
5.4 Process Recording and Enactment 21 
5.5 Process and Tool Improvement 22 
5.6 Process Documentation 23 
5.7 Considerations for Computer-Based Tool Architectures 23 

6. FURTHER WORK 24 

7. CONCLUSIONS 24 

REFERENCES 26 

ACKNOWLEDGMENTS 27 

APPENDIX A - OVERVIEW OF SEE-ADA 28 
A.l Introduction 28 
A.2 System Framework 28 
A.3 SEE-Ada Views 30 
A.4 Viewing Attribute Information 32 
A.5 Viewing Relationships 33 
A.6 Script Mode 34 

APPENDIX B - TASK DEFINITIONS AND EXAMPLES 36 

APPENDIX C - UMAS DATA SCHEMA 39 

APPENDIX D - USAGE PROFILES 40 



List of Figures 

FIGURE 2-1. CONTEXTUAL MODEL 4 
FIGURE 2-2. INCLUDING A DESCRIPTION PROCESS 6 
FIGURE 2-3. IVES CONCEPTUAL MODEL 7 
FIGURE 2-4. IMPLEMENTING THE IVES CONCEPTS IN A REAL PROJECT SETTING 9 
FIGURE 3-1. USAGE MONITORING SYSTEM WITHIN THE AVIDES PROCESS-BASED MODEL 12 
FIGURE 3-2. SEE-ADA USAGE MONITOR WINDOWS 13 
FIGURE 4-1. UM AS OVERVIEW 16 
FIGURE 4-2. UMAS USAGE CONTROL WINDOW 17 
FIGURE 5-1. UMAS GRAPH OF TIME SPENT BY TASK AT WEEKLY INTERVALS 20 
FIGURE 5-2. UMAS GRAPH OF TIME SPENT FOR EACH TASK CATEGORY 20 
FIGURE 5-3. USAGE MONITOR AND SCRIPT MODE WORKING TOGETHER 22 
FIGURE A-l. THE SEE-ADA SYSTEM FRAMEWORK 29 
FIGURE A-2. MAIN REPRESENTATIONS USED WITHIN SEE-ADA 31 
FIGURE A-3. VIEWING ATTRIBUTES IN SEE-ADA 32 
FIGURE A-4. VIEWING RELATIONSHIPS IN SEE-ADA 33 
FIGURE A-5. SEE-ADA SCRIPT MODE 35 

List of Tables 

TABLE 3-1. MAPPING TASK CHARACTERISTICS TO SEE-ADA INFORMATION 11 
TABLE 4-1. FILTERED SUMMARY OF UMAS TASKS 18 



Abbreviations 

AViDeS Advanced Visualisation and Description of Software 
CASE Computer Aided Software Engineering 
FCS Fire Control System 
ITD Information Technology Division 
IV&V Independent Verification and Validation 
IVD Integrated Visual Description 
IVES Integrated Visualisation Environment for Software 
JÖRN Jindalee Over-the-horizon Radar Network 
PIR Project Information Resource 
PIRMAS Project Information Resource Measurement and Analysis System 
SWSC Submarine Warfare Systems Centre 
UMAS Usage Monitor Analysis System 



DSTO-RR-0119 

1. Introduction 

1.1 Background 

Although Computer-Aided Software Engineering (CASE) tools have promised to address 
many of the problems that have beset Software Engineering, there has been a marked lack 
of success in transitioning these tools into practice (Kemerer 1992) and (Vernik 1996 
§2.2.2.3). This lack of success can be partly attributed to the fact that many CASE tools have 
not been effective for particular tasks (Budgen, Marashi et al. 1993). For example, a tool 
might effectively support software development but be unable to provide information in a 
form suitable for other processes (eg joint reviews). In addition, there has been a notable 
lack of integration between CASE tools and existing Software Engineering processes. 
Similar types of problems have also been encountered with computer-based tools in other 
domains (Jorgenson, Kritz et al. 1995). 

We believe that another important reason why CASE tools have not completely fulfilled 
their promise is that there has been a lack of research into how these tools are used. The 
designers of computer-based tools need to carefully consider issues related to the provision 
and use of information: specifically, they need to know whether a tool is effective in 
providing the information required by users. This equates to knowing what tasks are being 
performed and what information is required for a given task at a particular point in time 
(Fernstrom 1991). 

In this report we argue that research into computer-based tools needs to provide 
information on what tasks are performed, when tasks are performed, what tasks require 
which information categories, who performs particular tasks, and what tasks are effectively 
supported by particular tools. We believe that this information can be obtained in a reliable, 
non-intrusive way if the tools themselves are instrumented so that usage data can be 
automatically captured as they are used. 

As discussed in Section Summary of Experiences, our experiences suggest that in addition 
to its application within research into tool use and information provision, usage data has a 
number of other important applications: 

• Usage data provides a basis for process automation and facilitation of common tasks. 

• Usage data provides an 'audit trail' of what information has been accessed by whom 
and when. Thus usage data can be useful as part of project documentation because it 
records that particular tasks (eg software inspections) have been effectively 
completed. 

• Usage capture acts as a feedback mechanism from the user to tool developers on the 
tool's usefulness, limitations and problems. 

These applications of usage data are discussed in §5. 

The research into capture and analysis of usage data described in this report has been 
conducted as part of the Advanced Visualisation and Description of Software (AViDeS) task 
being carried out by the Software Engineering Group, ITD, DSTO. The AViDeS task was 
established to address problems of visibility and information use on large software projects 



DSTO-RR-0119 

and the outcomes have been new concepts and tools for software visualisation. One such 
tool is the SEE-Ada environment (Appendix A), which implements a model-based system 
visualisation approach (Vernik 1996), providing computer-based visualisations that allow 
customisation and adaptation of software project information to user needs. SEE-Ada has 
been used as a key apparatus for the AViDeS research and, as such, has been instrumented 
to capture usage data in line with research objectives. This report discusses our experiences 
in capturing and analysing SEE-Ada usage data. 

1.2 Purpose 

This report aims to communicate experiences and results of instrumenting a CASE tool to 
support investigations into how the tool is used and its effectiveness in facilitating 
information access. It describes the instrumentation approach and the tools developed to 
help analyse captured usage data. The report also gives a brief summary of experiences in 
deploying the tool in case studies as well as presenting some preliminary conclusions about 
the effectiveness of such instrumentation and the advantages of instrumenting CASE and 
other computer-based tools in general. 

Although this report contains experimental data and preliminary conclusions, it should be 
noted that this data has been collected primarily from a single industry case study. It is not 
our intention in this report to draw final conclusions from the data presented, but rather to 
demonstrate the need for usage monitoring and to describe the general principles and 
techniques we have developed in order to collect and analyse usage data. 

1.3 Presentation 

Section 2 provides a brief overview of the AViDeS objectives, concepts, and approaches. It 
describes key AViDeS concepts including the process-based framework and the integrated 
visualisation approach. Section 2 also introduces the concept of an Integrated Visualisation 
Environment for Software (IVES) and discusses how an IVES implementation (SEE-Ada 
Version 3) has been used in laboratory and field studies. These studies have helped verify 
the AViDeS concepts and have aided in gaining a better understanding of how computer- 
based visualisation techniques can be used to support the information needs of individuals 
engaged in software engineering tasks. 

Section 3 discusses the principles that we believe determine what information should be 
captured in a computer-based tool and lists the data captured from SEE-Ada that satisfies 
these information requirements. Following this, the approach taken to instrument SEE-Ada 
to support usage monitoring is outlined. The usage monitoring subsystem added to SEE- 
Ada—the SEE-Ada Usage Monitor—is then discussed. 

Section 4 describes the Usage Monitor Analysis System (UMAS), which is the tool used to 
store and analyse captured usage information. This section demonstrates how UMAS is 
used to filter, analyse and display usage data. 

Section 5 presents experiences and outcomes from using the SEE-Ada Usage Monitor in 
conjunction with UMAS on a medium-sized software project. A scheme developed for 
classifying tasks within a software engineering project is described, along with some 



DSTO-RR-0119 

conclusions about the general applicability of such a scheme. The possibility of synthesising 
task classifications based on task content is then discussed. Some usage overview data 
collected over the course of the project is also presented. The important role of the Usage 
Monitor in recording, enacting and improving software engineering processes and 
enhancing project documentation is highlighted. We also present recommendations for 
CASE tool design based on our experiences with SEE-Ada. 

Section 6 discusses the need for further work in collecting usage data and developing a new, 
more widely applicable follow-on to SEE-Ada. The need for further research into 
developing a task classification system based on usage profiles is also discussed. 

Section 7 provides conclusions drawn from our research into tool instrumentation. It is 
argued that instrumentation is indispensable for CASE tool research and development. We 
also highlight that usage information is a valuable addition to the metrics and 
documentation of a software development project. 

Appendix A provides an overview of the SEE-Ada software system visualisation tool and 
some further references. Appendix B contains the complete list of task definitions described 
in Section 5.1. Appendix C contains a version of the schema used by UM AS to store usage 
information. Appendix D lists the usage profiles taken from the FCS project discussed in 
Section 5.3. 

2. AViDeS Concepts and Approaches 

The experiences discussed in this report are based on work undertaken as part of the 
Advanced Visualisation and Description of Software (AViDeS) task (ALO 94/081). This 
section provides the necessary context for this report by providing background information 
on the AViDeS research including fundamental concepts and approaches. 

2.1 Overview of AViDeS Research 

The purpose of the AViDeS task is to address problems being experienced by Defence in its 
acquisition, development and support of large military software systems. These include: 
problems in evaluating and maintaining software due to poor product and project visibility; 
and, problems with the effectiveness of, and high costs associated with, many current forms 
of project and product information (eg. documentation, metrics). 

The AViDeS work focuses on defining techniques which provide enhanced software 
product and project visibility through more effective use of underlying project information 
(eg. as captured by integrated project support environments and tools). It is based on 
presenting information by the way of computer-based visualisation techniques rather than 
through the production of vast amounts of software paperwork and metrics as is current 
practice for many large software projects. 



DSTO-RR-0119 

2.2 Key Concepts 

2.2.1 Process-Based Framework 

The Contextual Model of Figure 2-1 helps focus attention on those areas of prime interest to 
the AViDeS research. These are the processes and tasks undertaken by individuals involved 
in the software engineering aspects of a project, the source of information available, and the 
information flows. The Software Engineering (SE) Process includes those standard software 
lifecycle processes (as defined in the international standard on software lifecycle processes 
(ISO/IEC_12207-1995 1995)) that are required to generate and deliver software products as 
specified by the customer's requirement. The lifecycle processes provide an overview of the 
types of SE functions that are performed as part of a software project. Individuals 
undertake particular tasks within this framework. For example, the technical management 
process might include tasks that monitor project status, inspection tasks that identify quality 
problems, and analysis tasks that support problem resolution. The AViDeS research is 
primarily interested in how information can be most effectively provided to support 
individuals engaged in particular tasks. 

SE Process 

Project Information Resource 
LEGEND 

Lifecycle Processes 

o Information Processor 

■ Information Product 

 *- Descriptive Information 
Process Interaction 

Figure 2-1. Contextual model 

The Contextual Model also focuses on the source of information available to those engaged 
in SE tasks.    This source of project information is defined as the Project Information 



DSTO-RR-0119 

Resource (PIR). The PIR is a conceptual entity that represents the totality of persistent 
information for a project. (Vernik 1996) provides an approach to modelling and measuring 
the PIR. This work has been used to gain insights into the diversity, quantity, and timing of 
information produced during a software project. 

The various lifecycle processes produce and use information. Information can be used 
directly (eg by referencing a document) or it can be accessed through interactions with tools, 
environments, or people. A wide range of problems and issues related to the provision and 
use of software project information have been reported (see Vernik 1996 §2.3 for an 
overview). These include problems of information overload, inaccessibility, availability, 
and cost. A particular problem relates to the assimilation and integration of information. 
For example, some tasks may require a user to assimilate information from a range of 
sources and of different forms. A user tasked with evaluating the maintainability of a 
software product might need to assimilate test information, architecture diagrams, and 
configuration information. Some tasks require core information to be provided together 
with contextual information. For example, metric information often needs to be used 
together with other information to establish the relationship between specific metrics and 
the attributes of an entity that the metric values are meant to describe. The assimilation of 
information of different forms can require significant cognitive effort. Approaches are 
needed to help reduce this cognitive load by integrating information and providing it in an 
appropriate composite form. 

The Description Process was defined in Vernik (1996) to help address the many problems 
and issues related to the provision and use of information. As shown in Figure 2-2, this 
process provides a basis for accessing and filtering of information from the PIR. This 
process also supports the customisation, tailoring and adaptation of information. Four sub- 
processes were defined as part of an overall process framework. These are the Provision, 
Use, Mediation, and Facilitation processes. The Provision Process provides the basis for 
accessing and filtering of underlying information. It also supports the transformation of this 
information into composite Description Products. The Use Process considers the way in 
which provided information is used to support particular tasks, taking into account human 
cognitive and action processes (Norman 1986). The Facilitation Process supports the 
provision of custom descriptions. Facilitation is based on an analysis of information needs 
for particular tasks. The process supports the generation of description specifications which 
are used by the Provision Process to provide information customised to user needs. The 
Mediation Process provides a mechanism for direct feedback and sharing of knowledge 
between the Provision and Use processes. This process allows information to be adapted to 
user needs. 



DSTO-RR-0119 

A 

C» 
SE Process 

Description 
Process 

,*1' /A      U 

Project Information Resource 

LEGEND 

> Lifecycle Processes 

• Task 

Q Information Processor 

■ Information Product 

Descriptive Information 
Process Interaction 

Figure 2-2. Including a description process 

2.2.2 Integrated Visualisation Approach 

The AViDeS research focuses on the use of computer-based visualisation approaches as a 
basis for providing information tailored to a particular task and user. An integrated 
visualisation approach (Vernik 1996) has been proposed as a means of supporting the 
Description Process. This approach is based on the use of a Composite Systems Model to 
support the integration and assimilation of information. This model also supports the 
integration of representations and views. 

The concept of an Integrated Visualisation Environment for Software (IVES) has been 
proposed as a means of applying the integrated visualisation approach to the software 
engineering domain. Figure 2-3 shows how an IVES supports the Description Process and 
how it functions within a software project context. The IVES provides support for 
accessing, filtering, and integrating PIR information by way of a Software Product Model 
(SPM). The SPM is the Composite Systems Model for this domain of interest. It includes 
those entities, relationships, and attributes that are used to describe the Software Product. 
For example, the SPM could comprise the structural entities of a product (eg design and 
code entities) and the relationships between them (eg encapsulation, inheritance, uses, calls 
etc.). 

A composite SPM is then generated by adding attribute values. For example, attributes 
such as size, complexity, test results, configuration status, and requirements satisfied could 
be defined for the structural entities. 



DSTO-RR-0119 

The SPM provides the basis for generating Integrated Visual Descriptions (IVDs) for the 
user. IVDs are classes of information products that use a set of computer-based 
visualisations to describe aspects of interest. They provide a flexible means of customising 
and adapting information to suit individual needs. 

o    o Cs> 

Presentation 

c 
0 
N 
T 
R 
O 

Representation 

Modelline and Integration I     SPM ) 
Filtering 

Access 

*Jn form at ion 
*. Need 

PIRM  Details 

[ P1R Model   3 

Project Inform ation Resource 

Figure 2-3. IVES conceptual model 

The IVES can be controlled directly by the user through a direct manipulation user interface 
(Hutchins, Hollan et al. 1986) hence supporting the mediation process. The environment 
can also be controlled by way of a description specification which allows custom 
descriptions to be prepared as part of a Facilitation Process. The control component of an 
IVES provides a means of controlling the functions performed by a particular layer or by 
sequencing actions of several layers. 

2.3 IVES Implementation 

The SEE-Ada Version 3 environment has been developed as a practical implementation of 
an IVES. Appendix A provides an overview of this environment. SEE-Ada has been used 
to support AViDeS research objectives by providing a vehicle for developing and testing 
concepts and approaches. 

Figure 2-4 shows how SEE-Ada has been used within a software project context. The PIR 
represents the totality of information available to those involved in software-related tasks. 
In this case, the project relies heavily on information captured by an integrated software 
engineering environment, the Rational Apex Environment (Apex 1993). Several other 
sources of information are also shown including the Rational Rose analysis and design tool, 



DSTO-RR-0119 

various documentation (both deliverable documents such as those produced under (DOD- 
STD-2167A 1987) and the developmental information captured in Software Development 
Files), product metrics information, test information, and information that resides with 
project personnel. SEE-Ada has a range of filters and mechanisms for capturing elements of 
this information and generating a composite SPM. For example, logical design information 
captured from the Rose tool is used as part of the structural model. The model is extended 
with physical design and code structure information obtained from the Apex design facility 
and code libraries. When combined with traceability relationships, the SPM represents a 
consistent structural model of the software product ranging from the highest level design 
concepts through to particular lines of code. A composite SPM is generated by integrating 
attribute information. This information is filtered from particular sources and includes test 
results, size measures, change and configuration details, build status, and information on 
requirements traceability. The composite SPM can be automatically generated and updated 
by way of the Facilitation Process. This process uses information captured by the PIR 
Modelling and Analysis System (PIRMAS). PIRMAS can provide information on the 
various classes of information that are available at particular points in time and provides 
details on how this information can be accessed and filtered. 

The user can obtain required information by directly interacting with the environment to 
produce the required visualisations. Alternatively, by using the Script Mode interface, the 
Facilitation Process can be used to automatically generate custom descriptions based on user 
needs and the usage context. Typically, a combination of both is required where a custom 
description is generated and the user interacts (or mediates) with the environment to adapt 
it to their exact needs. 



DSTO-RR-0119 

CZD 

CAPEX ~~N 
Environment       J 

Requirements 
Traccabilily 
Domain Knowledge 

Physical Design 
Code (ASIS) 

CM (Build + Release) 
Process Management 

Test Cases 
Test Lists 
Test D rivers 
Test Results 
Test Coverage 

Sot'tw arc 
Development 

Files 

Change 
Records 

Project Information Resource 

figure 2-4. Implementing the IVES concepts in a real project setting 

2.4 Experimentation 

The setup shown in Figure 2-4 has been used as the basis for both laboratory and industry 
studies (Vernik 1996). One of these projects was the Active Missile Decoy (AMD) Fire 
Control System (FCS). The primary focus of these studies related to the information needs 
of Software Team Leaders. These studies aimed to identify the types of tasks performed by 
Team Leaders, what information was required to support these tasks, and how the AViDeS 
concepts and approaches could be used to more effectively provide this information. 

Clearly, to conduct these types of investigations and to verify the AViDeS concepts, some 
form of instrumentation was required. A Usage Monitor was incorporated into SEE-Ada to 
help support the aims of the studies. The next section discusses the approach taken, and 
issues associated with providing a means of capturing and analysing usage information. 

3. Instrumentation Principles and Approach 

This section discusses aspects that need to be considered in relation to tool instrumentation. 
The approach taken to enable usage monitoring within SEE-Ada is then described. 



DSTO-RR-0119 

3.1 Instrumentation Principles 

Instrumentation goals need to be clearly defined before deciding what information must be 
captured. For example, one goal may be to capture what information is being accessed. 
Another goal might be to measure the effectiveness of data representations provided by the 
tool. Once goals have been defined, a set of generic information characteristics needed for 
each goal can be identified. The next step is to produce a mapping from these generic 
characteristics to specific information items that can be captured from the tool. This type of 
goal-based approach is described by (Basili and Rombach 1988) and extended by (Vernik 
1996). 

Our main goals for SEE-Ada instrumentation are related to the identification of user 
information requirements and measurement of tool effectiveness. From these goals we 
identified that the following characteristics needed to be captured for each task executed: 

1. Task definition and objectives. The task should be defined using a classification 
scheme that is effective for task analysis (a task classification scheme that was 
developed during case studies is described in §5.1). 

2. User details. Knowing who performs what tasks—in conjunction with knowledge of 
what role each user has—makes it possible to know the information needs for a given 
class of user. 

3. Information accessed. This includes what entities, relationships and attributes were 
displayed. It is important that this characteristic be related to the representation used 
to display the information (characteristic 4). 

4. Representations used. This captures what sort of information displays were used 
and how they were applied. Display types might include directed graphs, text lists, 
tables, hierarchy trees, etc. This characteristic should also capture what facilitation 
processes were used to generate each display. 

5. Date/time of recording and elapsed time information. Time-stamping each task 
allows profiles of task types executed over time to be generated. It also allows us to 
see when different information types are accessed. The elapsed time for each task is 
useful as an effectiveness metric for facilitation processes. 

6. The degree of user interaction. This is an indication of how much effort the user had 
to expend to obtain the information required. This characteristic also provides 
another measure of facilitation improvement in addition to characteristic 5. 

7. User feedback both during and at the end of the task. Allowing the user to enter 
comments during the task helps us understand what the user's intentions were. 
These comments are especially valuable since they appear in context—we can see 
what the user was doing at the time the comment was made. Comments can also be 
used to record task results and achievements. In addition, having the user rate the 
effectiveness of the tool at the completion of each task allows us to check that efforts 
to facilitate information access and otherwise improve the tool are successful from the 
user's point of view. Note that when collecting effectiveness data it is important to 
realise that there are many possible effectiveness criteria that can be used to rate a 

10 



DSTO-RR-0119 

task: these criteria might include accessibility, customisability, scalability, etc.  A more 
exhaustive set of effectiveness criteria is listed in (Vernik 1996 Appendix B). 

Table 3-1 lists each characteristic above against information items captured in SEE-Ada. 

Table 3-1. Mapping task characteristics to SEE-Ada information 

Characteristic SEE-Ada Information Items 

1. Task definition Task name: selected from a defined task naming 
scheme. 
Objective: user's description of task objective. 

2. User details User name: the Unix login name of the person 
recording the task. 

3. Information accessed Ada entities: Ada packages, procedures, etc.. 
Design entities: design abstractions such as 
subsystems, classes, etc. 
Product attributes: measures of code size, 
requirements, complexity, etc. 
Process attributes: test results, completion status, 
audit status, etc. 
Resource attributes: unit authorship, effort, etc. 
Relationships: package dependencies, procedure 
call relations, design encapsulation, etc. 

4. Representations used View types: SEE-Ada view names such as List, 
Subsystem, Layers, Source, Contains, etc. 

5. Start date and elapsed time Start date. 
End date. 
Actual time: actual time spent recording not 
counting pauses. 

6. User interaction Number of commands executed. 
Keystrokes. 
Mouse clicks. 

7. User feedback User comments. 
Evaluation criteria: feedback on effectiveness 
criteria that is entered into a form at task 
completion. Criteria might include: 
understandability, completeness, flexibility, etc. 

3.2 SEE-Ada Instrumentation Approach 

Figure 3-1 shows how the SEE-Ada usage monitoring system fits into the overall system 
introduced in Figure 2-4. The SEE-Ada Usage Monitor saves usage data in log files, which 
are processed by a filter tool and imported into the Usage Monitor Analysis System (§4). 
The usage logs can also be used as part of the facilitation process (§5.4, 5.5) and can form 
part of the total Project Information Resource as project documentation. 

11 



DSTO-RR-0119 

SEE-ADA 

Usage Monitor 

Script Mode 

Usage 
»|     Logs 

FILTER 

CFacilitation    \ 
Process^^ 

USAGE MONITOR 

ANALYSIS SYSTEM 

(UMAS) 

PROJECT INFORMATION RESOURCE 

Figure 3-1. Usage monitoring system within the AViDeS process-based model 

Two possible approaches to capturing the usage data described in Table 3-1 are possible: 

• capture the data by having SEE-Ada fill in a table with fields similar to those listed in 
Table 3-1, or 

• capture the data in log form, with a header containing the task definition, followed 
by a list of commands executed during the task and terminated by a footer containing 
data such as task execution time. 

We chose to capture the usage data in a log form because not only does the log contain all 
the data described in Table 3-1 (accessible by analysis) it can also be used for other purposes 
including project documentation and process improvement.   These uses are discussed in 
§5.4-5.6. 

3.2.1  SEE-Ada Usage Monitor 

The SEE-Ada Usage Monitor windows are shown in Figure 3-2. The Usage Monitor is a 
special mode of SEE-Ada and may only be enabled by a command line option when SEE- 
Ada is invoked. When the Usage Monitor is activated in this way, the SEE-Ada Main 
Window initially appears as an icon and the user sees a notice informing them that the 
Usage Monitor is active. This notice also contains an option to display an information 
window that describes how the user should employ the Usage Monitor for specific research 
investigations: this description is usually customised for each project. 

12 



DSTO-RR-0119 

Usage Monitor Setup > 

Select Task r)   Eva1uat8.Code.CodittoJfractice% 

Objective:   To identify non-compliance with standards 

User:  moo 

Continued from:   T    sera:* 

Stiipt/Task name:       _ _ _        _        _ 

OK   )     Modify task names <-) 

;Sv SEETA*» Usage Monitor :$TOPPH> 

-setup)   f.ttüi :   >»us« :•   s»u)   103 *) ,options r) 

Current t»*te:::?|OTia«t^9^Xöding^atfices (();. 
Started:  09/) 2/96 09 39. U   yter: mpp 

Main Window 

Setup Window 

& Usage Monitor Loo 

Printj    Save)   _NawJ 

»name :   Evaluate.Code.Coding_Practices   (1) 
»objective       :  To identify  non-compliance with   standards 
»user :  mpp 
»started :   09/12/96  09:39:14 
Continued       :   FROH_SCRATCH 
»windows :  0 
»input :   FALSE 
09/12/96 09:39:14 USAGE.RECORDING 
09/12/96 09:39:18  FILE_MENU.OPEN   ("Example") 
09/12/96 09:39:19  VIEWS_MENU.SUBSYSTEM   ("CSCI_DESIGN") 
09/12/96 09:39:22  SUBSYSTEM.SELECTION.HOUSE   ("Source_Instrumenter") 
09/12/96 09:39:39  SUBSYSTEM.VIEWS.LAYERS 
09/12/96 09:39:51  LAYERS.SELECTION.SELECT_LIBRARY_UNITS 

— PROCESS-STEP:   Describe  use  of global   variables 

09/12/96  09:40:39  LAYERS.OVERLAY.ATTRIBUTES  ("INT",   "CODE.AUDIT",   "GLOBAL_VARIABLE_DECLARED" 
09/12/96  09:40:44  LAYERS.SELECTION.VALUES-WINDOW  ("SOURCE_INSTRUMENTER_DECLARATIONS") 
09/12/96  09:40:51  LAYERS.VIEWS.SOURCE   ("/mount/se27_home2/se_users/pld/APEX/PROCRAM_METRICS. 

— RESULTS:  This  unit has  7  global   variable  declarations 

09/12/96  09:42:30  LAYERS.SELECTION.VALUESJMINDOW  ("SOURCE_INSTRUMENTER_DECLARATIONS") 
09/12/96   09:42:30  LAYERS.OVERLAY.RELATIONSHIPS.SIMPLE_WITH   ("BACKWARD",   "SINGLE_STEP") 

— DECISION: This  unit and  the   7 units  that use  it will   need  to be modified 

09/12/96  09:43:38  LAYERS.SELECTION.SELECT_ALL_UNITS 

— PROCESS_STEP:   Describe use  of GOTO's 

09/12/96  09:45:40 LAYERS.OVERLAY.ATTRIBUTES  ("INT",   "CODE.PROFILE",   "STMT_GOT0",   "  0",   "",   " 

— RESULTS:   No  GOTO's  found 

09/12/96  09:46:23  USAGE.STOPPED 
»stopped :   09/12/96  09:46:23 
»total   time     :   00:07:09 
»actual   time   :  00:07:09 

Log Window 

Figure 3-2. SEE-Ada usage monitor windows 

After the initial notice, the Usage Monitor Window appears in the top-right corner of the 
screen and the Setup Window appears in the centre. The Usage Monitor Window displays 
information about the current task and the mode of the Usage Monitor: Stopped/Recording or 
Paused. 

Whenever a new task is to be started, the user enters task details via the Setup Window. In 
the example above, the user mpp intends to check compliance of source code with standard 
coding practices, so the task identifier Evaluate.Code. Codingpractices is selected and a 

13 



DSTO-RR-0119 

sentence describing the objective entered. The user then starts the task by selecting the OK 
button and begins using SEE-Ada. The commands executed during the task are shown in 
the Log Window, which is displayed via a menu on the Main Window. When the task is 
complete, the user selects the Stop button on the Main Window, which terminates the task. 
At this point the time spent executing the task is automatically entered at the end of the log 
and the Usage Monitor is ready to start the next task. 

The design of Usage Monitor GUI was carefully considered because it is important to 
encourage the user to employ the Usage Monitor consistently and correctly. In order to 
facilitate this, the user should be aware of the current task and Usage Monitor mode. To 
this end the Main Window is small, stays on top of all windows and provides clear 
information on current task and visual feedback on recording state. The Setup Window is 
designed to allow the user to quickly select the task type from a menu, enter the task 
objective and then start executing the task. 

There is also an alarm feature that causes a prompt window to appear at regular intervals 
(usually every 15 minutes) which asks the user if the they are still recording the same task. 
This helps to prevent run-on tasks: ie tasks that occur when the user forgets to inform the 
Usage Monitor that they have started a new task and merges one task into the other. 

3.2.2 Usage Logs 

Figure 3-2 shows an example of a SEE-Ada usage log. The log consists of a task header (the 
initial starred lines), a series of commands and a footer (trailing starred lines). The header 
contains all the information entered into the Setup Window with the addition of: 

• the time the task started, 

• whether the task was started from 'scratch' or was a follow-on to a previous task, 

• the number of SEE-Ada windows that were open when the task began, and 

• whether the user made any input to SEE-Ada before beginning the task. 

The items described in the last three points are captured in order to detect if the user might 
have had information already on the screen when the task was started. This usually occurs 
when the user has windows from a previous task still open. If the user did start the task 
with information already displayed then the usage log may not have captured all the 
information accessed. Thus this data helps to verify that the Usage Monitor is being used 
correctly and is capturing all relevant data. 

The lines following the header represent commands executed by the user. These are 
recorded one command per line, each command being prefixed by the time it was issued. 
Commands are represented in the same syntax as SEE-Ada Script Mode commands, 
allowing straightforward translation of usage logs into scripts. In order to make commands 
easy to understand, the Script Mode command structure is modelled as closely as possible 
on the logical SEE-Ada GUI command interface eg FILE_MENU.QUIT, VIEW'.LAYERS, etc. 
Following each command is an optional parameter list containing any extra information 
required by that command eg FILE_MENU.OPEN ("A_System_Name"). 

14 



DSTO-RR-0119 

The lines starting with '--' are comments which are used to document usage logs. When 
entering a comment, the user may first select a comment category such as OBSERVATION, 
PROCESS_STEP, PROBLEM, DECISION, RESULTS, etc. These comment categories help to 
structure comment information. For example, in the task being recorded in Figure 3-2, the 
user has delimited individual sections of the evaluation with the PROCESS_STEP category, 
and tagged any actions to be taken as a result of the evaluation using DECISION. This 
scheme makes logs easier to understand and helps in finding specific types of comment 
during later analysis. 

The footer of the log contains the time the task was stopped, the total time that the task was 
recording and the actual time spent executing the task (ie the total time minus any time 
spent paused). Any data collected via the optional task evaluation form is also recorded in 
the footer. 

3.2.3 SEE-Ada Instrumentation 

SEE-Ada's command logging feature is implemented as an independent subsystem that is 
connected into the original code by a number of 'hooks' so as to minimise the chance of 
introducing errors into SEE-Ada. While this is not the best way to implement a usage 
monitor in general, it was necessary in SEE-Ada because it does not have fully separate GUI 
and command layers. In a tool that has detached GUI and command layers, 
instrumentation would be best achieved by having the command subsystem report all 
commands received to the usage monitor subsystem. The need for this sort of design is 
discussed further in §5.7. 

It was recognised early on that, while capturing all SEE-Ada commands would allow more 
complete 'macro' recording, it would also result in capturing much more information than 
was needed to satisfy research goals. Our approach was to initially instrument SEE-Ada to 
capture only a core set of commands encompassing major operations and then to 
progressively add commands in response to requirements found during use in case studies. 
Many of the newer captured commands were added in order to provide more complete 
information on the state of tool before major operations. For example, in Figure 3-2 the first 
command following the second comment records that the 
SOURCE_INSTRUMENTER_DECLARATIONS unit was selected just before the second 
command (which displays relationships for selected units) was invoked. Without this 
selection command it would not be possible in later analysis to determine for which units 
the relationship was displayed. 

A later addition to the Usage Monitor was an option to capture counts of keystrokes and 
mouse clicks and insert them in the log as special commands. This was provided as an extra 
aid to measuring the amount of user interaction with the tool. 

15 



DSTO-RR-0119 

4. The Usage Monitoring and Analysis System 

The Usage Monitor Analysis System (UMAS) is a tool for storing, analysing and presenting 
usage information collected by the SEE-Ada Usage Monitor. This section describes how 
UMAS is structured and what tools it provides for usage analysis and visualisation. 

4.1 UMAS Overview 

Figure 4-1 shows the structure of UMAS. The data stored in UMAS is generated by a Perl 
(Wall and Schwartz 1991) script that reads usage logs and produces task data in a form that 
can be directly imported into the UMAS database. Data scanned from the usage logs 
includes the fields from the task header, information about actions performed during the 
task and information types accessed. A complete version of the data schema used by UMAS 
is shown in Appendix C. 

SEE-ADA USAGE 

MONITOR 

UMAS 

Graphs 

Usage Control 
Window 

Reports 

Task Details User & Script 
Actions 

Information 
Accessed 

User 
Comments 

Relational Database 

Figure 4-1. UMAS overview 

UMAS provides queries, graphs and reports that allow access to usage data in a number of 
ways. The main interface is the Usage Control Window, which allows the user to filter and 
display tasks and task information. 

4.2 Analysis and Display of Usage Information 

The primary interface provided by UMAS to filter and display usage data is The Usage 
Control Window (Figure 4-2). This window is composed of a number of group boxes, each 
containing a one or more data fields. Each group box corresponds to an aspect of task data 

16 



DSTO-RR-0119 

stored with the database (eg task definition, views used, etc) while each of the fields within 
the group are filters against that aspect. The number in the top-right corner of each group 
box shows how many items currently match the filter, while the View button at the bottom 
of each group displays a list of those matching items. 

35 Usage Control l-jal.x| 

FCSPhase2 
— SystemsJ- 

Norna. 

51 — 

Clear View... 

I'Tastel A — 

Start Date atom mm ■ ■ 
;|is/ifl/«i6S9«        -q   »I   «If 

Finish Dots: 

Task: User 

'8/10/9613 5617 JSp 

Status: 

i?!?:.■.99.i8^^,, F-il I ZI I 3 

Claar        I View.        I      Summniy..    I        Report...      I      Comments... 

■S'ResourcBsB 2b — 

View: 

Oaar View... 

Kind. 

"3 
Name 

~3 r 
Script 

Report»; t~   Grouped 

|f— Views [H -J      lT- pAcBons| 

Figure 4-2. UMAS Usage Control window 

The Systems and Tasks groups both serve to match a subset of tasks. While the Systems 
group is used to restrict the selected tasks to those that accessed particular SEE-Ada 
systems, the Tasks group restricts the task subset based on the fields in the task header (such 
as task definition, date recorded, user, etc). The other groups allow the user to filter subsets 
of detailed data associated with each task in the selected subset. This data includes the 
views used, scripts executed, and attributes applied. For example, the Kind field in the 
Resources group could be set to 'Attributes' so that only the attributes used by the task 
subset are displayed when the View button is selected. 

Most UMAS reports take their data from the filtered subset generated by the Usage Control 
Window, thus the procedure for generating a particular report is to first select the data 
using the appropriate filters and then select the desired report type. For example, suppose a 

17 



DSTO-RR-0119 

summary of all Evaluate.Code.Coding ^Practices tasks between 15/10/96 and 28/10/96 is 
required. The filters needed to select these tasks have been entered into the Tasks group in 
Figure 4-2. Once these filters have been entered, the summary report shown in Table 4-1 is 
displayed by selecting the Summary button. 

Table 4-1. Filtered summary ofUMAS tasks 
Date User ,,^TIm©'-;; Views Attributes Relations User    Script 

Actions Actions 
Comments Prints Scripts 

16/10/96! eking 

24/10/96'eking 

01:29:44 

00:11:49 

02:00:32 

00:56:12 

3 

3 

 3 

3 

23 

 2 

j        41 j         211              31 

l| 22} 2j 1 

2   1! 
 i"| 

 i 

28/10/96 eking i         13 5 

 25 

1 

 3 28/10/96 eking 26 

UMAS also provides a number of graphs that display summary information over all tasks in 
the database. These graphs can help to answer questions such as 'who is recording what 
tasks?', 'what task types are most prevalent?' and 'what tasks are being executed at different 
stages of the project?'. Examples of these graphs in the context of the FCS project are 
presented in §5.2. 

5. Summary of Experiences 

This section contains some initial experiences gained from using the SEE-Ada Usage 
Monitor and UMAS on a medium-sized software development project. A more detailed 
discussion of these findings can be found in (Vernik 1996 §6.2.8.4). 

As mentioned in §1.2, it should be noted that the data displayed in this report is taken from 
a single project that was halfway complete when the report was being produced. The data 
presented here is provided for illustrative purposes only, and any results derived from the 
data should not be regarded as final. 

5.1 Capturing Task Definitions 

Prior to commencing a usage study, task analysis needs to be performed. This analysis 
should result in a classification of tasks which will be used to define all work undertaken 
(one such classification of tasks is listed in Appendix B). This task classification is important 
because of the role it plays in structuring task analysis. Without a classification to use as the 
basis of referring to tasks it would not be possible to answer such questions as 'what work 
was undertaken?' or 'who is undertaking the work?'. The classification also helps the 
person executing the task to maintain a clear idea of what goal they are working towards. 

Note, however that although the classification is important, it does not necessarily have to 
be definitive, and may only be applicable within a certain project. The important thing is 
that it is effective for analysis and applied consistently. Nevertheless, the task classification 

18 



DSTO-RR-0119 

will be more useful if it is generic, thus allowing direct comparison of results across multiple 
projects. To permit this, the classification must be able to evolve—within a consistent 
framework—as further studies are made. The framework used for the task classification 
was the international standard on software development processes (ISO/IEC_12207-1995 
1995). The task classification scheme in Appendix B was initially developed from the 
processes defined in ISO 12207 and was then extended by conducting interviews and 
making observations of tasks in the workplace. 

One problem that arose while developing the task classification was that the same name is 
often used for quite different tasks. For example, the term review is often used for both code 
inspection tasks and formal meetings with the customer. Therefore, once an initial 
classification had been developed, it was important to ensure that users worked consistently 
within this framework and modified it only when appropriate. In practice this was not 
wholly successful: only a subset of the task definitions were used, sometimes in the wrong 
context, and little user-generated evolution of the task scheme eventuated. Another 
common problem occurred when the user started out on one task and then, after identifying 
an anomaly, began another task without resetting the Usage Monitor. Although measures 
have been put in place that should help resolve these problems, it may be more effective to 
classify tasks in terms of synthesised usage profiles (as suggested in §5.3 and (Vernik 1996 
§7.3.1.2)). 

One important conclusion we have drawn from our work in this area is that a task 
classification scheme works best when: 

• the scheme is based on a well-defined framework, 

• users are involved in defining the scheme, 

• users are trained in the meaning and use of the scheme, and 

• researchers are regularly present to supervise and provide advice. 

5.2 Overview of Tool Usage 

In addition to the reports available through the Usage Control Window, UMAS can 
generate a number of overview graphs and reports. These graphs display information 
including: 

• what tasks are being executed, 

• how long is being spent on each task type, 

• who is executing what sort of tasks, and 

• when different information types are being accessed. 

For example, Figure 5-1 shows a cumulative total of time spent on each task category in the 
FCS project broken down into weekly intervals. Figure 5-2 is a snapshot of the last week 
(28/10) in Figure 5-1. The data displayed in these graphs is sampled from mid-way through 
the project, and it can be seen that the most time has been spent on the tasks 
Analyse.Design.Features (-17 hours) and Analyse.Code.Dependencies (-16 hours). 

19 



DSTO-RR-0119 

mmto     cocDCDtDh^r^     h-r^r^oococo     oo     o     o     o>     o     o>     oooo 
OOOOOOOOOOOOOOOOOOOOOT^Y'Y'Y 
cooi^coot^^j^c6inc^(iir)cyo)CDCM(icocoot^-'i-^-cb 
T-       CJ       CM t-T-CO 7-OJCN T-       i-        CM T-CMCO T-        CM       CM 

Week Beginning 

—♦— Analyse.Code.Characteristics      —•— Analyse. Code. Dependencies —A— Analyse.Code. Features 

—X—Analyse.Design. Dependencies    —1—Analyse.Design.Features 0    E\aluate.Code 

D    Evaluate.Code.Coding_Practices    ■    Inspect.Design.Structure 

Figure 5-1. UMAS graph of time spent by task at weekly intervals 

Analyse.Code.Features 

Analyse.Code.Characteristics 

Familiarisat'on.Product Structure 

Analyse.Design.Dependencies 

a Evaluate.Code.Coding_Prarices 

Evaluate.Code 

InspectDesign.Structure 

Analyse.Code.Dependendes 

Analyse.Design.Features 

■+- -+- 
Relative Time 

Figure 5-2. UMAS graph of time spent for each task category 

20 



DSTO-RR-0119 

These graphs provide objective answers to questions such as 'which tasks are executed at a 
particular stage in the project?' and 'when is this type of information accessed?' As a whole, 
UMAS graphs and reports form a project profile which is useful both to researchers and 
project managers because it provides objective measures of project activity and status at any 
given time. These displays can also serve as an education and training aid for task 
managers by showing when different tasks are usually executed and the sort of task profiles 
that might be expected at each stage of a project. 

5.3 Usage Profiles and Task Classification 

One form of UMAS report is the usage profile, examples of which are listed in Table 4-1 and 
Appendix D. The usage profile report contains a breakdown of various actions performed 
during a task, and was initially developed to show relative task activity levels. However, 
while using these reports on FCS project data, we observed that the profiles for identical 
task types are often similar. Consequently, if a profile differs significantly from others in 
the same task domain, it usually indicates that the associated task warrants further 
examination. 

For example, Task 1 in Appendix D is a Monitor task in which the user is looking at Ada 
source code in order to assess the degree of completeness of various subsystems. The high 
number of user actions (41) is characteristic of this sort of task since it is exploratory in 
nature. In contrast, we would expect that tasks 14, 15 and 16—which are all Evaluate.Code 
tasks—would have a relatively low number of user actions, since this task is executed by a 
script. This expectation is borne out in tasks 14 and 16 which both have zero user actions, 
but not for task 15 which has 27. A study of the task 15 log reveals that the user saw a 
problem about halfway through the task and spent some time inspecting source code as a 
result. This source code inspection generated the high user action count because it involved 
manually selecting units and invoking a command to display their source code. 

The fact that the profiles for the same task types are often similar and that large deviations 
from the profile hint at exceptional conditions indicates that profiles might be used as a task 
classification scheme. While the profile scheme illustrated here is too coarse to be generally 
useful as a classification mechanism, its (unintended) utility in this regard indicates that a 
task content-based classification scheme might be possible with a specifically designed 
profile method. 

5.4 Process Recording and Enactment 

As previously discussed, the usage log for a task can be used to generate a script that re- 
enacts that task. The Usage Monitor can also be used while a script is being executed, in 
which case it captures both user and script actions in the log. 

Figure 5-3 shows the Usage Monitor and Script Mode working together in this manner. The 
Script Mode window shows a script that is being used to help automate the process of 
evaluating coding practices. The Usage Monitor has recorded both script and user actions 
as part of the current task with the script actions preceded by a '+'. 

21 



DSTO-RR-0119 

via»» r)   tttpiay y)   owrlw:rjj;~CoH<ffa<id:'^ 

Sc|tct_^i    Peitlea r j    ;oom In ;    Zoom Out J 

. Uy»ra Vky ■ xfc •,, SEErM* Usm» Msattar: RECOKDINC. 

\S22ZJ. J5*S£ä'' JÜ2?.)   »?&). .'■"»-I .option» 

A Car<«ot««fc  Evdli«iCodt.C«ing.*JOi<if (1) 

PP.INT...AP.PAYS 

PP.1 HT-AP.P.AYS 

COMPONENT-INSERTION 

CON!>ONENT_IIISEfcriON 
PLACE-COMPONEBT-IR-CP.AP 

MAKE-GRAPH 

MMI-CONTROL-MENUS 

TREE-BUILDER 

TREE-BUILDER 

USER-PARAMETERS 

CASE-INSENSITIVE-STRINC 

CASE.. INSENSITIVE ..STRING 

UTIL-FOP.-TREE 

IITII. ...F0R.-.TP.EE 

UTILITIES 

UTILITIES 

S1RIBC-UTILS 

STRINC-UTILS 

GRAPHIC-DRIVER 

CRAPHIC-DP.IVEP. 

BODY 

SPEC 

BODY 

SUB-BODY 

J-!., 

3   _■ | 

a ■ 

Shta« enawitttt« unite i) Nun« 
Sho»V»tu«t:  *j All 

-. Oo J *$?2[!i \?^°^U 3.~J 

NO'AtVIDIIt« 

Kltilt Anrittst» J 

2744 
2176 
2233 
2244 
1190 
2199 
2482 
2559 
ilfirt 

FALSE 
03/01/97   09:26:28   USAGE.RECORDING 
03/01/97   09:27:24  FILE-MENU.OPEN   ("CMP960715") 
03/01/97   09:27:46   SCRIPT-MODE.START-SCRIPT   ("/users/se/mpp/FCS-PRO]ECT 
03/01/97 09:27:46 
03/01/97 09:27:52 
03/01/97 09:28:11 
03/01/97 09:28:12 
03/01/97 09:28:12 
03/01/97 09:29:05 

SCRIPT-COMMAND.STOP 
■4- VIEWS-MENU.LAYERS 
+  LAYERS.ZOOM-OUT 
+  LAYERS.SELECTION.SELECT-ALL-UNITS 
+   LAYERS.OVERLAY.ATTRIBUTES     ("INT",   "CODE.AUDIT" 
+   SCRIPT-COMMAND.STOP 

smisimm 
Script fll '. EXUy (Set*):  (^ 

load)   ItunJ   Step)   Sfcloj   Rtxlj _ Stopping on «TOT J* Vim log)   Quit) 

--   «OPEN  THE   SYSTEM TO  REVIEW>> 
SCRIPT-COMMAND.STOP; 
VIEWS-MENU.LAYERS; 
LAYERS.ZOOM_OUT; 

—  PI   Parameter mode   shall   be   specified   (Ref 4.7) 
This metric  displays  a count of the number of times  that a parameter 
was  specified without a mode. 

LAYERS.SELECTION.SELECT_ALL-U»ITS; 
LAYERS.OVERLAY.ATTRIBUTES   ("INT",   "CODE.AUDIT",   "EXPLICIT-IN-PARAHETERS",   "   1" 
"",   "■■,   M",   ■•",   •■",   "",   "FALSE",   "FALSE",   "NO-ENCAPS-INFO",   "TRUE",   "FALSE"); 
SCRIPT-COMMAND.STOP; 
LAYERS.SELECTION.SELECT-ALL_UNITS; 
LAYERS.OVERLAY.ATTRIBUTES ("INT", "CODE.QUALITY", 
"CS.1.4_CALLING-SEQUENCE_STANDARDS(Y/N)", " 0", "", "", "", "", "", "", "", "" 
"FALSE". "NO-ENCAPS-INFO", "TRUE", "FALSE"); 

Figure 5-3. Usage Monitor and Script Mode working together 

Using the Usage Monitor and Script Mode together has proved a very effective method of 
generating scripts for process enactment. For example, on the FCS project, the regular code 
evaluation task involves an experienced user following a process designed to discover 
potential and actual problems in the project source code. This task was facilitated by 
performing an analysis of its information requirements (based on project development 
standards) and then developing a mapping from those requirements to information and 
views available in SEE-Ada. The evaluation task was then performed by an experienced 
analyst using SEE-Ada to provide the information and views identified by the previous 
step, while the Usage Monitor was used to record the task. The usage log thus generated 
was then transformed into a script that would cause Script Mode to enact the evaluation 
within SEE-Ada. 

5.5 Process and Tool Improvement 

By recording the actions taken during a task, usage logs increase understanding of what is 
done during the task, what information is needed by the user and whether facilitation 

22 



DSTO-RR-0119 

processes are effective. This understanding allows the tools and facilitation processes to be 
improved. 

For example, the Usage Monitor was used to enhance the task facilitation script described in 
§5.4. After the script had been developed, the usage logs generated when users executed 
the script were analysed in order to identify further enhancements. These enhancements 
included extra steps that users needed to execute and suggestions by users entered as 
comments in the log. This process was performed a number of times, producing a cycle of 
incremental process improvement. 

The Usage Monitor also plays a role in conveying user feedback to researchers by allowing 
special comments in the log. UMAS can be used to find these comments and display the 
task logs where they occur. For example, if the tool behaves oddly or cannot provide some 
information that the user needs, a comment with the category SEE_ADA_PROBLEM can be 
logged at the point where the problem occurred. This feedback mechanism is both 
convenient for the user and effective in facilitating tool improvement. The number of 
problems logged by users can also serve as a metric of process improvement (Vernik 1996 
§7.3.5). 

5.6 Process Documentation 

Although the Usage Monitor was developed to support research, when it was deployed in 
an industrial software development project it was also found to be useful as a 
documentation tool. Developers and task managers on the FCS project used Usage Monitor 
logs as documentation of which tasks had been completed, what units had been inspected, 
what problems were found, and task results. The comment feature of the Usage Monitor 
proved particularly useful in this regard, because it enabled observations to be recorded in 
the context that prompted them, thus allowing them to be brief while remaining readily 
understood at a later date. 

5.7 Considerations for Computer-Based Tool Architectures 

An important lesson learned during the course of adding the Usage Monitor to SEE-Ada is 
that it is important for such tools to have fully decoupled command and GUI layers. In 
other words, the tool should have two independent subsystems, one being a 'server' that 
executes commands sent to it by 'clients', the other being a GUI 'client' that provides a front 
end to the server and graphical display of server output. 

Apart from the advantages from a software engineering point of view, there are two reasons 
to structure CASE tools this way: 

• Instrumentation can be installed in the command layer to capture and filter all 
commands issued. This allows consistent and reliable command capture in a way 
that is unlikely to affect other functions of the tool. It also means that 
instrumentation can be added at any point in tool development with minimal impact 
on existing functionality. 

23 



DSTO-RR-0119 

• The input to the command layer can come from sources other than the GUI, making it 
straightforward to implement a scripting facility, which would simply be another 
client of the command layer. 

The ability to execute scripts is an obvious advantage in any application, and we believe 
that the added power of employing a usage monitor and scripting system as a mechanism 
for process improvement make it a important part of any computer-based tool. 

6. Further Work 

We have already mentioned that the SEE-Ada Usage Monitor and UMAS system have so far 
been used only within DSTO and on a single industry case study. In order to formulate 
more general conclusions and enhance techniques further, usage data from a number of 
different projects needs to be collected and analysed. Accordingly, one of the main areas of 
future work is to deploy SEE-Ada on further case studies (eg the IV&V of software in the 
Collins Submarine, JÖRN and the Joint Command Support Environment). 

As part of the follow-on to AViDeS research, an extended, more generic successor to SEE- 
Ada is being planned. The design of this new tool will incorporate the separation of 
command and GUI layers discussed in §5.7 in order to more completely support the 
facilitation process. 

There is also a need to pursue research into the possibility of classifying tasks using the 
content-based profiles approach discussed in §5.3. 

7. Conclusions 

The research described in this report highlights the importance of instrumentation in CASE 
tools. In particular, it has been argued that usage information: 

• provides knowledge of task-related information needs, 

• facilitates incremental process and tool improvement, and 

• can and should be used as part of software engineering documentation. 

This report has discussed the principles of CASE tool instrumentation, including what 
characteristics should be captured and how these might map to data available in a CASE 
tool. The necessity of developing a task classification scheme has been discussed and we 
have described some difficulties associated with using such a scheme in the field. We have 
also suggested that classifying tasks using content-based profiles might be a possibility. 

As a real-world example of CASE tool instrumentation, this report has described the 
approach taken to add a usage monitor to SEE-Ada. Experiences while undertaking this 
work have lead us to recommend that computer-based tools be designed from inception to 
include support for usage monitoring and scripting. 

24 



DSTO-RR-0119 

This report has also described UMAS, a tool developed for the analysis of SEE-Ada usage 
information. We have demonstrated the features developed in UMAS for filtering and 
displaying usage data. Example data collected from a case study conducted on the FCS 
project has shown how usage information can be used to profile software engineering tasks 
and information use. 

25 



DSTO-RR-0119 

References 

Apex (1993). Using Rational Apex. Santa Clara, CA, Rational Software Corporation. 

Basili, V. R. and H. D. Rombach (1988). "The TAME Project: Towards Improvement- 
Orientated Software Environments." IEEE Transactions on Software Engineering 14(6): 758- 
773. 

Budgen, D., M. Marashi, et al. (1993). Case Tools: Masters or Servants? Software Engineering 
Environments '93, Reading, England, IEEE. 

DOD-STD-2167A (1987). Defence System Software Development, U.S. Department of 
Defence. 

Fernstrom, C. (1991). The Eureka Software Factory: Concepts and Accomplishments. Proc. 
Third European Software Eng. Conf., Springer Verlag, Berlin. 

Hutchins, E. L., J. D. Hollan, et al. (1986). Direct Manipulation Interfaces. User Centered 
System Design. D. A. Norman and S. W. Draper. Hillsdale NJ, Lawrence Erlbaum 

Associates: 31-61. 

ISO/IEC_12207-1995 (1995). Information Technology - Software Life Cycle Processes, 
International Standards Organisation. 

Jorgenson, L., R. Kritz, et al. (1995). Is Visualization Struggling under the Myth of 
Objectivity? Visualization '95, Atlanta, Georgia, IEEE Computer Society Press. 

Kemerer, C. F. (1992). "How the Learning Curve Affects CASE Tool Adoption." IEEE 
Software May 1992: 23-28. 

Norman, D. A. (1986). Cognitive Engineering. User Centered System Design. D. A. Norman 
and S. W. Draper. Hillsdale NJ, Lawrence Erlbaum Associates: 31-61. 

Vernik, R. J. (1996). Visualisation and Description in Software Engineering. Computer and 
Information Science. Adelaide, University of South Australia: 232. 

Wall, L. and R. L. Schwartz (1991). Programming Perl. Sebatopol U.S.A., O'Reilly & 
Associates. 

26 



DSTO-RR-0119 

Acknowledgments 

The following people have supported the research described in this report: 

Richard Altmann, Andrew Loja and Ian Turner helped develop the initial design for the 
SEE-Ada Script Mode interface. Ian Turner implemented Script Mode and has been 
responsible for enhancements needed to support this research. Chris King has provided 
invaluable feedback on the use SEE-Ada Usage Monitor in his role as Project Manager of the 
FCS project. 

27 



DSTO-RR-0119 

Appendix A - Overview of SEE-Ada 

A.l     Introduction 

SEE-Ada is a tool for the visualisation of large, complex Ada software systems. It uses 
computer graphics to provide meaningful, scalable views of the total software system, 
including design and code entities, their attributes and relationships. SEE-Ada can assist in 
a wide range of software engineering tasks including management, development, 
independent verification and validation, quality assessment, and software maintenance. 

Key features of SEE-Ada are: 

• Software System Visualisation environment based on the use of an underlying 
Software Product Model to support multiple-perspective views and information 
integration. 

• Open environment that allows the import and integration of a wide range of 
information from a variety of project sources. 

• Allows the display of project information integrated with structural representations 
of the software system. 

• Provides the ability to customise and adapt information to specific needs. 

A.2     System Framework 

Figure A-l shows the structure of the SEE-Ada environment. 

28 



DSTO-RR-0119 

GRAPHICAL USER INTERFACE 

Script Mode 
Interface 

INFORMATION I/O 

[ Parser  ] ( Structure I/O ") Attribute I/O 

Filters and Utilities 

PROJECT INFORMATION RESOURCE 

Figure A-l. The SEE-Ada System Framework 

A range of information can be extracted from software project sources and imported into 
SEE-Ada. Structural information about the system (eg entities and their structural 
relationships) can be extracted from the Ada source code or obtained directly from an Ada 
compilation system via a standard ASIS interface using the filter tools provided. Structural 
design-level detail can also be imported by way of the Structure I/O feature. Data 
representing software/project attributes is imported into the SEE-Ada environment from 
external, commercial or locally developed tools. Many types of information can be 
imported including requirements, configuration management information, product 
measures, test results and so forth. Structural information provides the structural element 
of the Software Product Model (SPM). Other information is integrated into the model as 
attributes of the structural entities. 

Architectural views of the software are generated from the structural model and displayed 
in graphical form. Attribute information can be integrated into the views and used to 
describe and provide insights into software characteristics. 

SEE-Ada is an open system: design information, development history, and other data from 
CASE tools, development environments, and other sources can be imported into SEE-Ada 
and displayed in a consistent, and integrated manner. 

29 



DSTO-RR-0119 

A.3    SEE-Ada Views 

Figure A-2 shows a set of integrated views of a software system as presented by the SEE- 
Ada product. These views are generated from information captured in the Software 
Product Model. 

The Subsystem View shows 'design-level' information. In this case, the view shows the 
relationship between logical design entities (class categories filtered from the Rational Rose 
design tool) and physical design entities (Rational Subsystems from the Rational Apex 
environment). 

The Layers View shows the Ada compilation units that implement the highlighted section 
of the design shown in the Subsystem View. These Ada units are arranged based on 
compilation dependencies to provide a compact, spatial representation of the code modules. 
This view can be customised and tailored to support user needs. The compact 
representation allows other information to be superimposed. For example, in Figure A-2, 
information on the degree of commenting is superimposed via a colour mapping 
mechanism. The entities shaded red show those source code modules that have no 
comments. Other colours have been used as threshold values to indicate the degree of 
commenting. 

The Graph View is a view that can be generated from an arbitrary selection of entities. The 
directed graph representation can display any one of the relationships stored in the 
Software Product Model. The Graph View shown in Figure A-2 shows the with structure 
between a selection of packages. 

The Contains View shows those subprograms encapsulated in an Ada compilation unit. For 
example, the TREE_BUILDER package body encapsulates both functions and procedures as 
shown in Figure A-2. 

The user has selected the 'STRING_ASSIGN' procedure and requested a text view to show 
the related source code. Link attributes associated with the Software Product Model 
provide the basis for displaying this information. 

30 



DSTO-RR-0119 

SEC-Adaw    Ada. romposrr 

..fll« r)   Vam r)   Prafwant« r) 

' Soliysum Vlaw: Composer 

ViewtrJ ."Attribut« r)    Comiraiwl r)' 

JMSÖ JäHfHLÖ ^SSÜLÜ-) .lüE.?!?^ 

«li*»*««^' . 

.ViKtlJ -S!?.Pl**."'J ,?!!ta!LrJ ..?0'?™!??1 y 

BontniMiyif)» 
V.iWJ .   I     Oudar • 1     CWily <-; 

Contents ]    Selw_r;.    Owgltg T ;, 

fim.ML-l 

Graph Vlaw-SIH^LCWIFM 

yjtyHT)    ftamat)    ABfibatti)    CBilitharid r) 

Jilt t} ..edit t) .strta«-) ..Peseten <•}   ZOOTHP.)   zoo»out) 

TJ Soar» -/ea_<h-lv.„pl/prtijeas/AOA_COMPOSER/prodacf/sayrTe/ail»_fllesAr(i„hl 

iE*5S:38S8 
procedure  STRING-ASSIGN   C 

OEST-STRINC 
SOURCE-STRING 

in   out  STRING 
in   STRING ); 

This  procedure  assigns  as many  characters from the  source-String 
to the dest_string  (if  source-String  is  larger than  dest_string) 
or assigns  all   of  source-String  to dest_stnng  and  pads with 
blanks any  remaining unassigned characters in dest_string. 

External  Subprogram Bodies 

procedure  INITIALIZE  is 
begin 

Figure A-2. Main Representations Used within SEE-Ada 

As can be seen from this figure, a set of integrated views of the software product allows the 
user to quickly traverse from high-level design concepts to individual lines of code in a 
consistent way whilst maintaining context. 

31 



DSTO-RR-0119 

A.4    Viewing Attribute Information 

>*«kfyiM&tttiralmVtHSIil 
vhwur)   Attribute r ),, Gamut i 

;s»]»ci.rJ .?«•!•«•;.) Jtomij>) .*??mo<*;i 

■f1 Na Attribute»    J       ^Colour* j 

' | Ntjlt Attribut»» fj. ■    »rfertei*sj 

Show Wim: X) *"   ' 

»   I   R»<«tti   Record r   ctotr f 

CROW»: CODE.AUOIT    ATTRIBUTE: GLoeAL_VARIABLE_DECLAR 

Nane Type Id At 

CfiADHICS„['ATA 

MMI_PARai€TERS 
TEKORIVER 

PAC*_SPEC 1374       2: 
PACK„SPEC 1M4       7 

PAO...SPEC 1380      7 

-r 

Figure A-3. Viewing Attributes in SEE-Ada 

The integration of information is a key concept that has been explored as part of the AViDeS 
research. Figure A-3 shows a Subsystem View and a Layers View with attribute information 
superimposed. 

In this case, attributes were used to identify those entities that declare global variables. The 
use of global variables can result in highly coupled software that is difficult to maintain. In 
Ada, the use of global variables in sections of the software which use concurrent threads can 
result in race conditions. These conditions can induce serious timing problems and 
intermittent failures that are difficult to rectify. 

Attributes can be overlaid onto any of the Subsystem, Layers, Worksheet, Graph and 
Contains view via the use of the Attributes Tool as shown in Figure A-3. The Attributes 
Tool specifies the mapping of threshold values to up to 5 different colours. This allows both 
numeric and symbolic data to be overlaid as colours onto the 5 aforementioned views. 
Individual values can be viewed in a Show Values window if desired. 

32 



DSTO-RR-0119 

The approach of integrating information on SEE-Ada views can support a wide range of 
needs. For example, configuration management information can be used to identify those 
units that have undergone most change. This information can also be superimposed to 
show which programmers had authored or changed particular units. Test information can 
be superimposed to show which units have undergone test, the extent of that testing and 
the results of particular tests. 

A.5    Viewing Relationships 

DBptayrv   Ovifä?*}'  £öntrt»nd i 

frwflütfZ) *-^SÜS^if-y P^P^-^^S,^) 

—J  «-U     llNWEJrflTH   *J        >}-   *>)    T'ttiCfl 

Colour   (telanonsmpStatus       Des^ptlon 

■ g« tattoo« kips. 

RED CAUS DISPLAYED 
3LUE FUIL_WITH ALLOCATED 
uis siHfu.vrih IUSHWI) 
•■■■**-. ni'-^-r ,=v::" ft1.1.--:■•"-:J 

LACK 

DASHED 

DOTTED 

j"l ..rt^m 

Graph Vt«W - «IMHE-W 

: 4$     library unlo 

! rf    Compllatfon Urt|B 

; vf.   OtharicvftH 

1 *PPj> 1     Cttfrttjffts J    , Custom balton J 

; rf  S*1act*d Units 
; J   Alt VttlbU Unit» 

jfoom to >   2*#n Out): 

Jl   I^H 

Figure A-4. Viewing Relationships in SEE-Ada 

Figure A-4 shows how SEE-Ada views can be customised to provide required information. 
Relationships between code entities are typically provided in terms of a directed graph of 
the complete system (eg the Graph View shows the compilation dependency 'with' 
relationship between a subset of units selected in the Layers View). This approach does not 
scale well and the superfluous information often confuses the user. 

The integrated visualisation approach as used in SEE-Ada allows the user to query for and 
superimpose only that information which is necessary for the task at hand.   For example, 

33 



DSTO-RR-0119 

the first level of a call tree from a subprogram has been superimposed in 'Red' and the 
'Green' trace line shows usage of the 'COMPONENTJMANAGER' library. Any 
relationship can be loaded into SEE-Ada. An example of the types of relationships that may 
be loaded is shown in the Relationships window of Figure A-4. 

A benefit of the integrated visualisation approach is that the information can be customised 
and adapted for a particular need and the information can be presented in terms of a 
familiar context (ie the general shape and layout of the pre-arranged compilation unit 
lattice). The display detail level of individual compilation units can be set so as to remove 
clutter caused by irrelevant information. In Figure A-4, the detail level of the 'TREEJO' 
package has been increased to show subprograms. The detail level of other packages has 
been reduced so that they appear only as points. 

Other 'secondary views' (eg the graph view) can be used to provide supplementary 
information or present information in a more meaningful way. 

A.6    Script Mode 

SEE-Ada supports task facilitation by providing a Script Mode Interface. This interface can 
support the setup of the environment. It also supports the preparation of custom 
descriptions for particular tasks. 

Figure A-5 provides an example of a script that can be used to support the evaluation of 
coding practices. The user can either step through each script action or 'Run' the script in 
which case the script will automatically execute each action until it reaches a 'stop' 
command. The script begins by opening the system to be evaluated and then automatically 
displays the Subsystem View called 'CSCI_DESIGN'. The user then interacts with the 
environment to select which sections of the system will be evaluated. A Layers View 
showing the Ada Compilation units for this section of the system is then displayed. The 
view is then tailored to provide a compact representation onto which other information can 
be superimposed. The script then supports various evaluation activities. The first phase of 
the evaluation (at Step 3) is to check for usage of anonymous types. The script selects an 
attribute that will indicate the use of anonymous types and overlays this information on the 
Layers View. The user gets an immediate visual indication of whether the code complies 
with this criterion. The user can then interact with the environment to conduct a further 
analysis. For example, the user may wish to see how the feature is used in the actual source 
code or may wish to change the colour mappings to highlight units with the highest 
proportion of non-compliances. 

34 



DSTO-RR-0119 

/Til 
Subsystem Vtaw: CSC1„DEVICN 

VHwi*«:) *' btarffar "T  Ovwtiv t.1'. 'Cammtrril » 

Lay»r& Vtow 

-IÜÜJ J«J i?J?!!EV 

r*V: i AflrttmtK Tsar. 

'Ooacjc.WtJtori'y'; 1 

''N«i»7kip^oiisLTy»«^-.:V;:;*:i'-.; ■''1 
■i.,"1  •V,:l3g"   :<::.-:,;S'iSJ!3Ä*'' 1 

••   V"-S"""'*i>f.^-'' '•'•••' '• 

.  +ii!-,;r'""'l'.<-.:t-:.     ■ •.. 

■" :v .        >»«»v«h»«.'2J.*nt '!:'■'* 

■c» •) I»tini„'»KQrtj .'.CjMr f ■ v.''v'l 

■» 

GROUP: CODE.AUDIT    ATTRIBUTE: 

Nan» Type 

PDLJIEN 

WttJVJTRIBuTES 
LEX 

ijTi:i_r-os"*_TRj-:r-: 

CASE_IHSEKSmvE_STaiNC 
PARSESTACK 

STATESTACK 

COMMAND,. LINE ..INTER FACE 

UTILITIES 
LEX_I[>ENTIFIER_TOKEN_VA 

LEXICAL_ERR0R_ME5SA^E 
MMI_P AR ALTERS 

PARSETAE-LES 
CNV„L'iB_MANAi;t;K 

<]RAPHIC_DRIVER 
TERMINALJVXESS 
TEKCRIVtR 
TEKORIVKR 

PACK.B 

PACK_B 

PACK..B 

PACKJ5 

PACK-B 
PACK^B 

PACK_B 
PACK..B 

PACO 
PACK_B 
PAC*WB 

PACK_S 

PACK..8 

PACKJJ 
PACK_8 

PAO'J 
PACK...S 
PACK.6 

I  Loyl)    WOT j*'- Sttp.j   &Wfrl    fttwtj    stepping on WT 

D«l«v tSftcs): 

■ EVALUATE.CODE,COOING PRACTICES ! 

- Description: 
■ This script facilitates the provision of descriptions for the 
- Evaluate.Code.Coding_Practices task 

— STEP 1.  "Open and display the system to be evaluated". 

i user interaction. 

■ STEP 2.  "Select and view the Subsystems to be evaluated". 

— tailor the view to best support the evaluation task. 
LAYERS.ZOOfLOUT; 
LAYERS.Z0OM_0UT; 

■ STEP 3.  "Identify and evaluate use of anonymous types". 

■ STEP 4.  "Identify and evaluate use of unchecked deallocation". 

■ Describe use of unchecked deallocation 

Figure A-5. SEE-Ada Script Mode 

The user then moves on to the next stage of the evaluation by running or stepping through 
the script. The script automatically 'cleans up' the views and then produces a visual 
description which will support the next stage of the evaluation. 
By using scripts in this manner, the set of actions that need to be undertaken for these types 
of evaluation tasks can be recorded and enacted. Relevant descriptions are provided to 
support the analyst. Although custom descriptions are produced, these can be adapted by 
users to help support their specific information needs. 

35 



DSTO-RR-0119 

Appendix B - Task Definitions and Examples 

This appendix lists task definitions that were developed for the FCS project. The selections 
that could be made from the SEE-Ada usage monitor are provided as examples of instances 
of the various classes of tasks. 

I. Evaluation:    Systematic determination of the extent to which an entity meets its 
specified criteria. 

Evaluate.Code 

Evaluate.Code.Ada_95_Compatibility 

Evaluate.Code.Architecture 

Evaluate.Code.Coding_Practices 

Evaluate.Code.Commenting 

Evaluate.Code.Error_Handling 

Evaluate.Code.Init_and_Shutdown 

Evaluate.Code.Layout 

Evaluate.Code.Multiprocessing 

Evaluate.Code.Naming 

Evaluate.Design 

II. Analysis:   Examination for the purpose of understanding,   (eg may need to perform 
analysis to gain sufficient understanding to specify a solution to a problem). 

Analyse.Code 

Analyse.Code.Characteristics 

Analyse.Code.Dependencies 

Analyse.Code.Features 

Analyse.Design 

Analyse.Design.Dependencies 

Analyse.Design.Features 

Analyse.Product 

Analyse.Product.Problems 

III. Inspection:   Examination to identify potential risks and product problems based on 
user's knowledge and experience. Inspections differ from evaluations in that they do 
not use specified criteria. 
•    Inspect.Code 

36 



DSTO-RR-0119 

• Inspect.Code.Configuration 

• Inspect.Code.Descriptiveness 

• Inspect.Code.Maintainability 

• Inspect.Code.Numerical_Methods 

• Inspect.Code.Portability 

• Inspect.Code.Reliability 

• Inspect.Code.Requirements_Allocation 

• Inspect.Code.Safety 

• Inspect.Design 

• Inspect.Design.Requirements_Allocation 

• Inspect.Design.Structure 

IV. Monitoring: Examination to assess progress and status of activities. 
• Monitor.Configuration_Status 

• Monitor.Integration_Status 

• Monitor.Release_Status 

V. Recording: Capture or update of persistent information to support future needs. 
• Record.Code 

• Record.Code.Features 

• Record.Code.Requirements_Allocation 

• Record.Design 

• Record. Design.Changes 

• Record.Design.Features 

• Record.Design.Requirements_Allocation 

• Record.Evaluation_Actions 

• Record.Inspection_Actions 

VI. Reporting: Preparation of persistent information to support the needs of a requestor. 
• Report.Evaluation_Results 

• Report.Inspection_Results 

• Report.Product_Characteristics 

• Report.Product_Features 

37 



DSTO-RR-0119 

Report.Product_Structure 

Report.Requirements_Allocation 

VII.     Demonstration:      Interactive   presentation   of   information   (eg   to   customers, 
management, auditors etc). 

Demonstrate .Conf ig_Mgt 

Demonstrate.Config_Mgt.Status 

Demonstrate.Evaluation 

Demonstrate.Evaluation.Actions 

Demonstrate.Evaluation.Status 

Demonstrate.Integration 

Demonstrate.Integration.Status 

Demonstrate.SEE_Ada 

Demonstrate.SEE_Ada.Concepts 

Demonstrate.SEE_Ada.Usage 

Demonstrate.Test 

Demonstrate.Test.Coverage 

Demonstrate.Test.Results 

VIII.    Familiarisation:    Observations to help gain general understanding of products, 
resources, or processes. 
• Familiarisation.Product 

• Familiarisation.Product.Attributes 

• Familiarisation.Product.Features 

• Familiarisation.Product.Structure 

• Familiarisation.SEE_Ada 

• Familiarisation.SEE_Ada.Concepts 

• Familiarisation.SEE_Ada.Features 

• Familiarisation.SEE_Ada.Usage 

38 



DSTO-RR-0119 

Appendix C - UMAS Data Schema 

s 
11 

VI 

C/) OJ «J 
X> >j >» 
D csi es 

C/J _l _l 

11 c 
3 o 

R 
.O 
•c 

13 •n 
ti «! OS CO 

a o 
to P 

OS O 
a Cfl 

H H 
o 

Q 
< 
CO 
Q 
O 

1 ffl 
J 
(X 

IM 

■3 
o 

U oo U 

CN 

o 

: 

^■~~"" 

H c- Ea c- 
3E 

El <^ 
Kacn 

19 •* Q CN 

1   <L> 
KJ rt wa = 

tl> 
Kill es   bfi e> 

K4 >   c ■^ 

Ba u s 
s m i—■ u Cu 

Ifl 

H 
HI "^ 
■ u 
1 u 

Ml « 

Ej > jaw 

1 vo ■f^ 
Ho 
pj 00 
IjacN 

<D 
u 

■H 
4-1 
O 
(VI 

CN 
o 
rH 
CD 
Ot 
D 
n 

u 
H 
cn 
W 
Q 

1 
H 
a 
w 
o 
— m 

s w 
Ml M o ^ < 
O U< = CO   J 

_) n> n CO CO 
01 a r~ Pi '^ m S 
61) -H <-H H |T| D w 
SS Tt u PJ CO  H 
Sfi <) yj ns o • > u (1) () in O 

T) X () !""> § s <> (1) ro ( 1 w X w w 
U 4J 

01 
rH In OS 

Fl 
S EH 

CO 
ID 3 CD w IW  >H 
4J rH CTi < I n IxJ S  CO ffl m \ «1 < h-l W pq 
3 > tno 1 w m H H   D 

-H ID a rH r. t/) D ü. > to 
irt ■H ^ o _l > O M CO OS < r-- O UD  CO 
w H <J CN I* o In tH rH rH  -NJI 

to no CO  CO 
m LO in in 

ro m n m 
(II T) rH rH rH   ^-i > (I) 

■H T) 3 (/I CD U3 K£}   \0 
4-> (1) Ö :* cr\ CTi cn cn 
I) 4-) -H o 4J \ ^v, •^ -^, 

(i) (II h u 4J T1 3 o o o o 
h ■n (1) iri C1 a ftrH rH rH   rH 
m A m 4J O -H « \ ^^ "-^  "^^ 
c () 3 U) I) :* ■H CO CX) CO  CO 

* * * * * * * CN CN CN  CN 

39 



DSTO-RR-0119 

Appendix D - Usage Profiles 

< 2-c 

£   C Ja 
v   2   C 

T> 

1-3.2 

U   en OH en- 

's T3 
.2 T3 

O      •«-• 

'U >-<_  .= 
d>   O   5 

I   O 

« ^    <U <U 

•H s ■; a 

bß a)   3 ■S 
< >   g .S 

-1 
o o o o O o O O o o vO o o ■*f Cx 

CM 

•c o o o o O o O O o o T-H o o f-H ^-« j—f 

(A 

c 
■c ft- 

CM CM o CM O r-t - rH o T—* o o - o «-H o 

C 
V 

C 

g 
o 
U 

in CM o tx i—< CM CO CM o o o o T—< CM M3 rx 
CO 

en 

u e 
&l   0 
<A   T! 

r-H oo 
CM o CO o CM 

CO 
oo 
CO 

o o 1-H 

T—1 
o in co o CM o 

(A 
c 

IS 

"3 

>tf o CO o •* o o o o o o o o o o CM 

CA 
01 

s 
ja •c 
< 

o M3 
T—< CO CO 

r-H r-« 
M3 in 

i—' o o o MD o o CM a o 
CO 

> 
M< CO CM r-H CO CO CO CO ■<* CO CO CM CM CO CO ■>* 

01 

e in 
CO 

CM 

8 

00 
o 
Ö 
in 

ö 
o 

o 
■<* 

CN 

8 

CM 
in 

CM 
o 

o 
o 

CM 

8 

p 
in 

8 

CO 
in 

CO 

8 

CO 
CM 

to 
H 

8 

CO 
o 
do 

8 

oo 
co 

CM 

8 

I—1 
in 

CM 

CO 
CO 

CM 
CM 

8 

•** 
o 
CM 
CM 

8 

co 
in 

CO 
T—* 

8 

in 

in 
CO 

T—< 

o 

oo 

o 

5 
bo 
C 

12 
u 

bo 
C 

o 

00 
C 

u 

c re 
"3 
T3 

bO 
C 

u 

bO g 
12 
u 

bo 
C 

12 
o 

bO 
C 

12 
CJ 

CA 

c 
o 
CA 
1- 
(0 

•£; 

c 

"o 
-a 

bo c 
12 
o 

bO 
c 

12 
c_» 

c 
a 

"o 
13 
u 

bo 
c 

12 
u 

bO 
C 

12 

bO 
C 

12 

c 

01 

Q 

(A re 
H 

0 

'c 
o 

CA 

3 
13 

l 
C 
,0 

13 
l- 

3 
bp 

C 
o 
U >-) 
o 

'c 
0 

2 

(A 
3 
13 
(?) 

i 
c 

_0 

13 

3 
bp 

*c 
O 
U 
u, 
O 

c 
o 

S 

C 
O 

13 
u 

_o 

13 
i 

(A 

c 

e 
01 
I* 
'3 
o- 
0) 

ri 
bO 

CA 
0J 

T3 

u 
tu 
O. 
CA 

c 

T3 
O 

U 

Si a. 
CA 

c 

01 
1-1 

3 
-4-J 
u 

l- 

.i 
CA 
01 

O 

\& 
<x 
CA 

c 

TJ 
0 
U 

u 
01 
a 
CA 

C 

0) 
-a 
0 
U 

0H 
CA 
C 

c 
.0 

M 
u 
3 
bO 

i*H 
c 
0 u 

T3 
o u 
u 
OJ 

a, 
CA 

c 

o u 

CA 

c 

01 
T3 
o u 

D. 
CA 

c 

CA 
01 

bO 
c 
CO 

X. u 
c 
bp 

'cA 
OJ 

D 
T3 

o 
(J 
o> 

c 
.SP 
'cA 

OJ 

D 
a! 
CA _>. 

13 
c < 

CA 
0J 
u 

"u re 
Cu 

1 
bC 
c 

■5 
c u 
oi 

T3 
o u 
oi 
CTS 

_3 
re > 

01 
Ti 
c 
U 
oi 

■*-» re 
_3 
"re > 
tu 

CA 
01 u 
tj re 
u 

C- 

bi c 
■a 
o 
U 
cv 

•a 
o 
U 
oi 
re 

_3 
"re > 

O 

(A 

H 

t—1 CM CO Tf in VD IN oo o\ o I—' CM CO Tf in MD 

40 



DSTO-RR-0119 

DISTRIBUTION LIST 

Capturing and Analysing Usage of Interactive Computer-Based Tools 
(DSTO-RR-0119) 

M.P. Phillips, R.J. Vernik 

AUSTRALIA 

DEFENCE ORGANISATION 

Task sponsor: 
FASDM 

Number of Copies 

S&T Program 
Chief Defence Scientist 
FAS Science Policy 
AS Science Corporate Management 
Director General Science Policy Development 
Counsellor, Defence Science, London 
Counsellor, Defence Science, Washington 
Scientific Adviser to MRDC Thailand 
Director General Scientific Advisers and Trials 
Scientific Adviser - Policy and Command 
Navy Scientific Adviser 

Scientific Adviser - Army 

1 shared copy 

1 
Doc Control sheet 
Doc Control sheet 
Doc Control sheet 

1 shared copy 

1 copy of Doc Control sheet 
and 1 distribution list 

Doc Control sheet 
and 1 distribution list 

Air Force Scientific Adviser 
Director Trials 

Aeronautical & Maritime Research Laboratory 
Director 

Electronics and Surveillance Research Laboratory 
Director 1 
Chief Information Technology Division 1 
Research Leader Command & Control and Intelligence Systems 1 
Research Leader Military Computing Systems 1 
Research Leader Command, Control and Communications 1 
Executive Officer, Information Technology Division Doc Control sheet 
Head, Information Architectures Group Doc Control sheet 
Head, C3I Systems Engineering Group Doc Control sheet 
Head, Information Warfare Studies Group Doc Control sheet 
Head, Software Engineering Group Doc Control sheet 
Head, Trusted Computer Systems Group Doc Control sheet 
Head, Advanced Computer Capabilities Group Doc Control sheet 



DSTO-RR-0119 

Head, Computer Systems Architecture Group Doc Control sheet 
Head, Systems Simulation and Assessment Group Doc Control sheet 
Head, Intelligence Systems Group Doc Control sheet 
Head, CCIS Interoperbility Lab Doc Control sheet 
Head Command Support Systems Group Doc Control sheet 
Head, C3I Operational Analysis Group Doc Control sheet 
Head Information Management and Fusion Group Doc Control sheet 
Head, Human Systems Integration Group Doc Control sheet 
Task Manager 1 
Author 1 
Publications and Publicity Officer, ITD 1 

DSTO Library and Archives 
Library Fishermens Bend 1 
Library Maribyrnong 1 
Library DSTOS 2 
Australian Archives 1 
Library, MOD, Pyrmont Doc Control sheet 

Forces Executive 
Director General Maritime Development, Doc Control sheet 
Director General Land Development, Doc Control sheet 
Director General C3I Development 1 

Navy 
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex, 
Garden Island, NSW 2000. Doc Control sheet 

Army 
ABCA Office, G-l-34, Russell Offices, Canberra 4 

Intelligence Program 
DGSTA, Defence Intelligence Organisation 1 

Corporate Support Program (libraries) 
TRS Defence Regional Library, Canberra 1 
Officer in Charge, Document Exchange Centre (DEC), 1 
US Defence Technical Information Center, 2 
UK Defence Research Information Centre, 2 
Canada Defence Scientific Information Service, 1 
NZ Defence Information Centre, 1 
National Library of Australia, 1 

Universities and Colleges 
Australian Defence Force Academy Library 1 
Head of Aerospace and Mechanical Engineering 1 

Deakin University, Serials Section (mlist), 
Deakin University Library, Geelong, 3127 1 

Senior Librarian, Hargrave Library, Monash University 1 
Librarian, Flinders University 1 



DSTO-RR-0119 

Other Organisations 
NASA (Canberra) 1 
AGPS 1 
State Library of South Australia 1 
Parliamentary Library, South Australia 1 

OUTSIDE AUSTRALIA 

Abstracting and Information Organisations 
INSPEC: Acquisitions Section Institution of Electrical Engineers 1 
Library, Chemical Abstracts Reference Service 1 
Engineering Societies Library, US 1 
Materials Information, Cambridge Scientific Abstracts 1 
Documents Librarian, The Center for Research Libraries, US 1 

Information Exchange Agreement Partners 
Acquisitions Unit, Science Reference and Information Service, UK 1 
Library - Exchange Desk, National Institute of Standards and 

Technology, US 1 

SPARES 10 

Total number of copies: 60 



Page classification: UNCLASSIFIED 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF 

DOCUMENT) 

2. TITLE 

Capturing and Analysing Usage of Interactive Computer-Based Tools 

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT 
CLASSIFICATION) 

Document 
Title 
Abstract 

(U) 
(U) 
(U) 

4. AUTHOR(S) 

M.P.Phillips and R.J.Vemik 

5. CORPORATE AUTHOR 

Electronics and Surveillance Research Laboratory 
PO Box 1500 
Salisbury SA 5108 

6a. DSTO NUMBER 
DSTO-RR-0119 

6b. AR NUMBER 
AR-010-406 

6c. TYPE OF REPORT 
Technical Report 

7. DOCUMENT DATE 
December 1997 

8. FILE NUMBER 
N9505/13/52 

9. TASK NUMBER 
94/081 

10. TASK SPONSOR 
FASDM 

11. NO. OF PAGES 
43 

12. NO. OF 
REFERENCES 
12 

13. DOWNGRADING/DELIMITING INSTRUCTIONS 

N/A 

14. RELEASE AUTHORITY 

Chief, Information Technology Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 

Approved for public release 

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, 
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600  
16. DELIBERATE ANNOUNCEMENT 

No limitations 

17. CASUAL ANNOUNCEMENT Yes 
18. DEFTEST DESCRIPTORS 

Software Engineering 
Computer-aided Software Engineering 
Human Computer Interface 

19. ABSTRACT 
This report argues that computer-based tools should incorporate features that support the capture and analysis of usage information, 
particularly if these tools are to be used as part of a research program. In addition to discussing the issues that need to be considered in terms of 
tool instrumentation and analysis support, this report provides details of experiences gained through the instrumentation of a Computer Aided 
Software Engineering (CASE) tool. 

Page classification: UNCLASSIFIED 


